ecBuild
Release 3.6.2

unknown

May 07, 2021

1 ecBuild macros

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10
1.11
1.12
1.13
1.14
1.15
1.16
1.17
1.18
1.19
1.20
1.21
1.22
1.23
1.24
1.25
1.26
1.27
1.28
1.29
1.30
1.31
1.32
1.33
1.34
1.35
1.36
1.37
1.38
1.39

CONTENTS

1
ecbuild_add_c_flags L e 1
ecbuild_add_cxx_flags e 1
ecbuild_add_executable L. e e e 2
ecbuild_add_fortran_flags L. e e e e 3
ecbuild_add_lang_flags e e e e 4
ecbuild_add_library e 4
ecbuild_add_option L. e e e e e 7
ecbuild_add_persistent e e e 8
ecbuild_add_resources e e e e e e e e e e e e e e e 8
ecbuild_add_test e e e e e e e e e e 9
ecbuild_append_to_rpath. e 11
ecbuild_bundle_initialize e e e 11
ecbuild_bundle e 12
ecbuild_bundle_finalize e e e 13
ecBuild Cache e e e e e e 13
ecbuild_check_c_source_return e e e e e e e e e e e e e 13
ecbuild_check_cxx_source_return it it e e e e e e e e e e e e e 14
ecbuild_check fortran e e 14
ecbuild_check_fortran_sSource_return v v v vt e e e e e e e e e e 15
ecbuild_check urls L e e 15
ecbuild_compiler_flags e e e 16
Using custom compilation flags L o 16
ecbuild_declare_project e e e e e e 18
ecbuild_dont_pack L 19
ecbuild_download_resource e e e e e e e e e e 19
ecbuild_echo_target_property v v i i i e e e e e e e e e e e e e e 19
ecbuild_echo_target e e e e e e 19
ecbuild_echo_targets e 20
ecbuild_enable_fortran L L e e 20
ecbuild_evaluate_dynamic_condition 20
ecbuild_filter LISt o e e e e e e e 20
ecbuild_find_fortranlibs e e e e e e e 21
ecbuild_find_lexyacc e 21
ecbuild_find_mpi oL e e e e 22
ecbuild_enable_mpi 23
ecbuild_include_mpio e e e e e e e e e 23
ecbuild_find_omp L e e e e e e 23
ecbuild_enable_omp e 24
ecbuild_enable_ompstubs e e 24

3

1.40 ecbuild_find_package e e e e e e e e e e 24

1.41 ecbuild_find_package_search_hints e 26
1.42 ecbuild_find_perl e 27
1.43 ecbuild_find_python 27
1.44 ecbuild_generate_config_headers 28
1.45 ecbuild_generate_fortran_interfaceso Lo 28
1.46 ecbuild_generate_project_config e e e e e e e e 29
1.47 ecbuild_generate_yy i e e e e e e e e e e e e 29
1.48 ecbuild_get_cxx11_flags oL 30
1.49 ecbuild_get_date L. e e e e e e e e e 30
1.50 ecbuild_get_timestampo e e e e e e e e e 30
1.51 ecbuild_get_test_data i e e e e e e e e e e 31
1.52 ecbuild_get_test_ multidata e e e e e 32
1.53 ecbuild_git o L e e e e e e e 33
1.54 ecbuild_install_project e e e e e e e e e e 34
1.55 ecbuild_list_add_pattern e e 35
1.56 ecbuild_list_exclude_pattern L e e e e e e e e 35
L1.57 LOogZING . . . o o o e e e e e e e e e e e e e 36
1.58 ecbuild_parse_version e e e e e e e e e e 36
1.59 ecbuild_parse_version_fileo oL 37
1.60 ecbuild_pkgconfig L. e e 37
1.61 ecbuild_print_summary L e e e e e e e e 38
1.62 ecbuild_regex_escape v v v v it e e e e e e e e e e e e e e e e 39
1.63 ecbuild_remove_fortran_flags L. L e 39
1.64 ecbuild_requires_macro_vVersiono i e e e e e e e 39
1.65 ecbuild_separate_SOUICES v v v vt e it e e e e e e e e e e e e e e e e e 39
1.66 ecbuild_target_flags e 40
1.67 ecbuild_try_run. e e e e e e e e e e 40
1.68 ecbuild_warn_unused_files e 42
ecBuild find package helpers 43
2.1 FIndFFTW . . . e e 43
2.2 Findlemalloc e e 44
2.3 FindTecmalloc e e e e 45
ecBuild third party scripts 47

CHAPTER
ONE

ECBUILD MACROS

1.1 ecbuild_add_c_flags

Add C compiler flags to CMAKE_C_FLAGS only if supported by the compiler.

ecbuild_add_c_flags(<flagl> [<flag2> ...]
[BUILD <build>]
[NAME <name>]
[NO_FAIL])

1.1.1 Options

BUILD [optional] add flags to CMAKE_C_FLAGS_<build> instead of CMAKE_C_FLAGS
NAME [optional] name of the check (if omitted, checks are enumerated)

NO_FAIL [optional] do not fail if the flag cannot be added

1.2 ecbuild_add_cxx_flags

Add C++ compiler flags to CMAKE_CXX_FLAGS only if supported by compiler.

ecbuild_add_cxx_flags(<flagl> [<flag2> ...]
[BUILD <build>]
[NAME <name>]
[NO_FAIL])

1.2.1 Options

BUILD [optional] add flags to CMAKE_CXX_FLAGS_<build> instead of CMAKE_CXX_FLAGS
NAME [optional] name of the check (if omitted, checks are enumerated)

NO_FAIL [optional] do not fail if the flag cannot be added

ecBuild, Release 3.6.2

1.3 ecbuild_add_executable

Add an executable with a given list of source files.

ecbuild_add_executable (TARGET <name>

SOURCES <sourcel> [<source2> ...]

[SOURCES_GLOB <globl> [<glob2> ...]]
[SOURCES_EXCLUDE_REGEX <regexl> [<regex2> ...]]
[OBJECTS <objl> [<obij2> ...]]
[TEMPLATES <templatel> [<template2> ...]]
[LIBS <libraryl> [<library2> ...]]
[INCLUDES <pathl> [<path2> ...]]
[DEFINITIONS <definitionl> [<definition2> ...]]
[PERSISTENT <filel> [<file2> ...]]
[GENERATED <filel> [<file2> ...]]
[DEPENDS <targetl> [<target2> ...]]
[CONDITION <condition>]
[PROPERTIES <propl> <vall> [<propz2> <val2> ...]]
[NOINSTALL]
[VERSION <version> | AUTO_VERSION]
[CFLAGS <flagl> [<flag2> ...]]
[CXXFLAGS <flagl> [<flag2> ...] 1]
[FFLAGS <flagl> [<flag2> ...] 1
[LINKER_LANGUAGE <lang>]
[OUTPUT_NAME <name>])

1.3.1 Options

TARGET [required] target name
SOURCES [required] list of source files

SOURCES_GLOB [optional] search pattern to find source files to compile (note: not recommend according to
CMake guidelines) it is usually better to explicitly list the source files in the CMakeList.txt

SOURCES_EXCLUDE_REGEX [optional] search pattern to exclude source files from compilation, applies o the
results of SOURCES_GLOB

OBJECTS [optional] list of object libraries to add to this target

TEMPLATES [optional] list of files specified as SOURCES which are not to be compiled separately (these are
commonly template implementation files included in a header)

LIBS [optional] list of libraries to link against (CMake targets or external libraries)

INCLUDES [optional] list of paths to add to include directories

DEFINITIONS [optional] list of definitions to add to preprocessor defines

PERSISTENT [optional] list of persistent layer object files

GENERATED [optional] list of files to mark as generated (sets GENERATED source file property)
DEPENDS [optional] list of targets to be built before this target

CONDITION [optional] conditional expression which must evaluate to true for this target to be built (must be valid
in a CMake i f statement)

PROPERTIES [optional] custom properties to set on the target
NOINSTALL [optional] do not install the executable

2 Chapter 1. ecBuild macros

ecBuild, Release 3.6.2

VERSION [optional, AUTO_VERSION or LIBS_VERSION is used if not specified] version to use as executable
version

AUTO_VERSION |[optional, ignored if VERSION is specified] automatically version the executable with the pack-
age version

CFLAGS [optional] list of C compiler flags to use for all C source files
See usage note below.
CXXFLAGS [optional] list of C++ compiler flags to use for all C++ source files
See usage note below.
FFLAGS [optional] list of Fortran compiler flags to use for all Fortran source files
See usage note below.
LINKER_LANGUAGE [optional] sets the LINKER_LANGUAGE property on the target
OUTPUT_NAME [optional] sets the OUTPUT_NAME property on the target

1.3.2 Usage

The CFLAGS, CXXFLAGS and FFLAGS options apply the given compiler flags to all C, C++ and Fortran sources
passed to this command, respectively. If any two ecbuild_add_executable, ecbuild_add_library or
ecbuild_add_test commands are passed the same source file and each sets a different value for the compiler flags
to be applied to that file (including when one command adds flags and another adds none), then the two commands
will be in conflict and the result may not be as expected.

For this reason it is recommended not to use the *FLAGS options when multiple targets share the same source files,
unless the exact same flags are applied to those sources by each relevant command.

Care should also be taken to ensure that these commands are not passed source files which are not required to build
the target, if those sources are also passed to other commands which set different compiler flags.

1.4 ecbuild_add_fortran_flags

Add Fortran compiler flags to CMAKE_Fortran_FLAGS only if supported by the compiler.

ecbuild_add_fortran_flags(<flagl> [<flag2> ...]
[BUILD <build>]
[NAME <name>]
[NO_FAIL])

1.4.1 Options

BUILD [optional] add flags to CMAKE_Fortran_FLAGS_<build> instead of CMAKE_Fortran_FLAGS
NAME [optional] name of the check (if omitted, checks are enumerated)
NO_FAIL [optional] do not fail if the flag cannot be added

1.4. ecbuild_add_fortran_flags 3

ecBuild, Release 3.6.2

1.5 ecbuild_add_lang_flags

This is mostly an internal function of ecbuild, wrapped by the macros ecbuild_add_c_flags, ecbuild_add_cxx_flags

and ecbuild_add_fortran_flags.
Add compiler flags to the CMAKE_${lang}_FLAGS only if supported by compiler.

ecbuild_add_lang_flags(<flagl> [<flag2> ...]
LANG [C|CXX|Fortran]
[BUILD <build>]
[NAME <name>]
[NO_FAIL])

1.5.1 Options

LANG: define the language to add the flag too
BUILD [optional] add flags to CMAKE_${lang}_FLAGS_<build> instead of CMAKE_${lang}_FLAGS
NAME [optional] name of the check (if omitted, checks are enumerated)

NO_FAIL [optional] do not fail if the flag cannot be added

1.6 ecbuild_add_library

Add a library with a given list of source files.

ecbuild_add_library(TARGET <name>
SOURCES <sourcel> [<source2> ...]
SOURCES_GLOB <globl> [<glob2> ...]]

SOURCES_EXCLUDE_REGEX <regexl> [<regex2> ...]]
TYPE SHARED|STATIC|MODULE |OBJECT | INTERFACE]
OBJECTS <objl> [<obj2> ...]]

TEMPLATES <templatel> [<template2> ...]]

LIBS <libraryl> [<library2> ...]]

PRIVATE_LIBS <libraryl> [<library2> ...]]
PUBLIC_LIBS <libraryl> [<library2> ...]]
INCLUDES <pathl> [<path2> ...]]
PRIVATE_INCLUDES <pathl> [<path2> ...] 1]
PUBLIC_INCLUDES <pathl> [<path2> ...]]
DEFINITIONS <definitionl> [<definition2> ...]]
PRIVATE_DEFINITIONS <definitionl> [<definition2> ...]]
PUBLIC_DEFINITIONS <definitionl> [<definition2> ...]]
PERSISTENT <filel> [<file2> ...]]

GENERATED <filel> [<file2> ...]]

DEPENDS <targetl> [<target2> ...]]

CONDITION <condition>]

PROPERTIES <propl> <vall> [<prop2> <val2> ...]]
NOINSTALL]

HEADER_DESTINATION <path>]

INSTALL_HEADERS LISTED|ALL]
INSTALL_HEADERS_LIST <headerl> [<header2> ...]]
INSTALL_HEADERS_REGEX <pattern>]

VERSION <version> | AUTO_VERSION]

SOVERSION <soversion> | AUTO_SOVERSION]

(continues on next page)

4 Chapter 1. ecBuild macros

ecBuild, Release 3.6.2

(continued from previous page)

CFLAGS <flagl> [<flag2> ...] 1
CXXFLAGS <flagl> [<flag2> ...]]
FFLAGS <flagl> [<flag2> ...]]
LINKER_LANGUAGE <lang>]
OUTPUT_NAME <name>])

1.6.1 Options

TARGET [required] target name

SOURCES [required] list of source files

TYPE [optional] library type, one of:
SHARED libraries are linked dynamically and loaded at runtime
STATIC archives of object files for use when linking other targets.

MODULE plugins that are not linked into other targets but may be loaded dynamically at runtime
using dlopen-like functionality

OBJECT files are just compiled into objects

INTERFACE no direct build output, but can be used to aggregate headers, compilation flags and
libraries

SOURCES_GLOB [optional] search pattern to find source files to compile (note: not recommend according to
CMake guidelines) it is usually better to explicitly list the source files in the CMakeList.txt

SOURCES_EXCLUDE_REGEX [optional] search pattern to exclude source files from compilation, applies o the
results of SOURCES_GLOB

OBJECTS [optional] list of object libraries to add to this target

TEMPLATES [optional] list of files specified as SOURCES which are not to be compiled separately (these are
commonly template implementation files included in a header)

LIBS [(DEPRECATED) optional] list of libraries to link against (CMake targets or external libraries),
behaves as PUBLIC_LIBS Please use PRIVATE_LIBS or PUBLIC_LIBS or CMake command
target_link_libraries instead

PRIVATE_LIBS [optional] list of libraries to link against (CMake targets or external libraries), they will not be
exported

PUBLIC_LIBS [optional] list of libraries to link against (CMake targets or external libraries), they will be exported

INCLUDES [(DEPRECATED) optional] list of paths to add to include directories, behaves as PUB-
LIC_INCLUDES Please use PUBLIC_INCLUDES or PRIVATE INCLUDES or CMake command
target_include_directories instead

PUBLIC_INCLUDES [optional] list of paths to add to include directories which will be publicly exported to other
targets and projects

PRIVATE_INCLUDES [optional] list of paths to add to include directories which won’t be exported beyond this
target

DEFINITIONS [(DEPRECATED) optional] list of definitions to add to preprocessor defines behaves as PRI-
VATE_DEFINITIONS Please use PRIVATE_DEFINITIONS or PUBLIC_DEFINITIONS or CMake command
target_compile_definitions instead

1.6. ecbuild_add_library 5

ecBuild, Release 3.6.2

PRIVATE_DEFINITIONS [optional] list of definitions to add to preprocessor defines that will not be exported
beyond this target

PUBLIC_DEFINITIONS [optional] list of definitions to add to preprocessor defines that will be publicly exported
to other targets and projects

PERSISTENT [optional] list of persistent layer object files
GENERATED [optional] list of files to mark as generated (sets GENERATED source file property)
DEPENDS [optional] list of targets to be built before this target

CONDITION [optional] conditional expression which must evaluate to true for this target to be built (must be valid
in a CMake 1if statement)

PROPERTIES [optional] custom properties to set on the target
NOINSTALL [optional] do not install the library

HEADER_DESTINATION directory to install headers (if not specified, INSTALL_INCLUDE_DIR is used) Note:
this directory will automatically be added to target_include_directories

INSTALL_HEADERS [optional] specify which header files to install:
LISTED install header files listed as SOURCES
ALL install all header files ending in .h, .hh, .hpp, .H
INSTALL_HEADERS_LIST [optional] list of extra headers to install
INSTALL_HEADERS_REGEX [optional] regular expression to match extra headers to install
VERSION [optional, AUTO_VERSION or LIBS_VERSION is used if not specified] build version of the library

AUTO_VERSION [optional, ignored if VERSION is specified] use MAJOR.MINOR package version as build ver-
sion of the library

SOVERSION [optional, AUTO_SOVERSION or LIBS_SOVERSION is used if not specified] ABI version of the
library

AUTO_SOVERSION [optional, ignored if SOVERSION is specified] use MAJOR package version as ABI version
of the library

CFLAGS [optional] list of C compiler flags to use for all C source files
See usage note below.
CXXFLAGS [optional] list of C++ compiler flags to use for all C++ source files
See usage note below.
FFLAGS [optional] list of Fortran compiler flags to use for all Fortran source files
See usage note below.
LINKER_LANGUAGE [optional] sets the LINKER_LANGUAGE property on the target
OUTPUT_NAME [optional] sets the OUTPUT_NAME property on the target

6 Chapter 1. ecBuild macros

ecBuild, Release 3.6.2

1.6.2 Usage

The CFLAGS, CXXFLAGS and FFLAGS options apply the given compiler flags to all C, C++ and Fortran sources
passed to this command, respectively. If any two ecbuild_add_executable, ecbuild_add_library or
ecbuild_add_test commands are passed the same source file and each sets a different value for the compiler flags
to be applied to that file (including when one command adds flags and another adds none), then the two commands
will be in conflict and the result may not be as expected.

For this reason it is recommended not to use the *FLAGS options when multiple targets share the same source files,
unless the exact same flags are applied to those sources by each relevant command.

Care should also be taken to ensure that these commands are not passed source files which are not required to build
the target, if those sources are also passed to other commands which set different compiler flags.

1.7 ecbuild_add_option

Add a CMake configuration option, which may depend on a list of packages.

ecbuild_add_option(FEATURE <name>
[DEFAULT ON|OFF]
DESCRIPTION <description>]
REQUIRED_PACKAGES <packagel> [<package2> ...] 1]
CONDITION <condition>]

[
[
[
[ADVANCED] [NO_TPL])

1.7.1 Options

FEATURE [required] name of the feature / option

DEFAULT [optional, defaults to ON] if set to ON, the feature is enabled even if not explicitly requested
DESCRIPTION [optional] string describing the feature (shown in summary and stored in the cache)
REQUIRED_PACKAGES [optional] list of packages required to be found for this feature to be enabled

Every item in the list should be a valid argument list for ecbuild_find_package, e.g.:

"NAME <package> [VERSION <version>] [...]"

Note: Arguments inside the package string that require quoting need to use the bracket argument syntax
introduced in CMake 3.0 since regular quotes even when escaped are swallowed by the CMake parser.

Alternatively, the name of a CMake variable containing the string can be passed, which will be expanded by
ecbuild_find_package:

set (ECCODES_FAIIL_MSG
"grib_api can be used instead (select with —-DENABLE_ECCODES=0FF)")
ecbuild_add_option(FEATURE ECCODES
DESCRIPTION "Use eccodes instead of grib_api"
REQUIRED_PACKAGES "NAME eccodes REQUIRED FAILURE_MSG ECCODES_
—FATIL_MSG"

DEFAULT ON)

1.7. ecbuild_add_option 7

https://cmake.org/cmake/help/latest/manual/cmake-language.7.html#bracket-argument

ecBuild, Release 3.6.2

CONDITION [optional] conditional expression which must evaluate to true for this option to be enabled (must be
valid in a CMake i f statement)

ADVANCED [optional] mark the feature as advanced

NO_TPL [optional] do not add any REQUIRED_PACKAGES to the list of third party libraries

1.7.2 Usage

Features with DEFAULT OFF need to be explcitly enabled by the user with ~-DENABLE_<FEATURE>=ON. If
a feature is enabled, all REQUIRED_PACKAGES are found and CONDITION is met, ecBuild sets the variable
HAVE_<FEATURE> to ON. This is the variable to use to check for the availability of the feature.

If a feature is explicitly enabled but the required packages are not found, configuration fails. This only applies when

configuring from clean cache.

With an already populated cache, use ~-DENABLE_<FEATURE>=REQUIRE to make

the feature a required feature (this cannot be done via the CMake GUI).

1.8 ecbuild_add_persistent

Add persistent layer object classes.

ecbuild_add_persistent (SRC_LIST <variable>
FILES <filel> [<file2> ...]]
[NAMESPACE <namespace>])

1.8.1 Options

SRC_LIST [required] CMake variable to append the generated persistent layer objects to
FILES [required] list of base names of files to build persistent class information for
The source file is expected to have a .h extension, the generated file gets a .b extension.

NAMESPACE [optional] C++ namespace to place the persistent class information in

1.9 ecbuild_add resources

Add resources as project files but optionally exclude them from packaging.

ecbuild_add_resources (TARGET <name>
[SOURCES <sourcel> [<source2> ...]]
[SOURCES_PACK <sourcel> [<source2> ...]]
[SOURCES_DONT_PACK <sourcel> [<source2> ...]
[PACK <filel> [<file2> ...]]
[DONT_PACK <filel> [<file2> ...]]
[DONT_PACK_DIRS <directoryl> [<directory2>
[DONT_PACK_REGEX <regexl> [<regex2> ...] 1)

8 Chapter 1. ecBuild macros

ecBuild, Release 3.6.2

1.9.1 Options

TARGET [required] target name (target will only be created if there are any sources)
SOURCES [optional, alias for SOURCES_PACK] list of source files included when packaging
SOURCES_PACK [optional, alias for SOURCES] list of source files included when packaging
SOURCES_DONT_PACK [optional] list of source files excluded when packaging

PACK [optional, priority over DONT_PACK, DONT_PACK_DIRS, DONT_PACK_REGEX] list of files to include
when packaging

DONT_PACK [optional] list of files to exclude when packaging
DONT_PACK_DIRS [optional] list of directories to exclude when packaging

DONT_PACK_REGEX [optional] list of regular expressions to match files and directories to exclude when packag-
ing

1.9.2 Note

All file and directory names are also partially matched. To ensure that only the exact file or directory name is matched
at the end of the path add a $ at the end and quote the name.

1.10 ecbuild_add test

Add a test as a script or an executable with a given list of source files.

ecbuild_add_test ([TARGET <name>]

[SOURCES <sourcel> [<source2> ...]]

[OBJECTS <objl> [<obj2> ...]]

[COMMAND <executable>]

[TYPE EXE|SCRIPT|PYTHON]

[LABELS <labell> [<label2> ...]]

[ARGS <argumentl> [<argument2> ...]]
[RESOURCES <filel> [<file2> ...]]

[TEST_DATA <filel> [<file2> ...]]

[MPTI <number-of-mpi-tasks>]

[OMP <number-of-threads-per-mpi-task>]
[ENABLED ON|OFF]

[LIBS <libraryl> [<library2> ...]]

[INCLUDES <pathl> [<path2> ...]]
[
[
[
[
[
[
[
[
[
[
[
[
[

DEFINITIONS <definitionl> [<definition2> ...]]
PERSISTENT <filel> [<file2> ...]]

GENERATED <filel> [<file2> ...]]

DEPENDS <targetl> [<target2> ...]]
TEST_DEPENDS <targetl> [<target2> ...]]

CONDITION <condition>]

PROPERTIES <propl> <vall> [<prop2> <val2> ...]]
ENVIRONMENT <variablel> [<variable2> ...]]
WORKING_DIRECTORY <path>]

CFLAGS <flagl> [<flag2> ...] 1]
CXXFLAGS <flagl> [<flag2> ...]]
FFLAGS <flagl> [<flag2> ...]]

LINKER_LANGUAGE <lang>])

1.10. ecbuild_add test 9

ecBuild, Release 3.6.2

1.10.1 Options

TARGET [either TARGET or COMMAND must be provided, unless TYPE is PYTHON] target name to be built
SOURCES [required if TARGET is provided] list of source files to be compiled
OBJECTS [optional] list of object libraries to add to this target

COMMAND [either TARGET or COMMAND must be provided, unless TYPE is PYTHON] command or script to
execute (no executable is built)

TYPE [optional] test type, one of:
EXE run built executable, default if TARGET is provided
SCRIPT run command or script, default if COMMAND is provided
PYTHON run a Python script (requires the Python interpreter to be found)
LABELS [optional] list of labels to assign to the test

The project name in lower case is always added as a label. Additional labels are assigned depending on the type
of test:

executable for type EXE
script for type SCRIPT
python for type PYTHON
mpi if MPT is set
openmp if OMP is set
This allows selecting tests to run via ctest -L <regex> or tests to exclude via ctest —-LE <regex>.
ARGS [optional] list of arguments to pass to TARGET or COMMAND when running the test
RESOURCES |[optional] list of files to copy from the test source directory to the test directory
TEST_DATA [optional] list of test data files to download
MPI [optional] Run with MPI using the given number of MPI tasks.
If greater than 1, and MPTIEXEC is not available, the test is disabled.
OMP [optional] number of OpenMP threads per MPI task to use.

If set, the environment variable OMP_NUM_THREADS will set. Also, in case of launchers like aprun, the
OMP_NUMTHREADS_FLAG will be used.

ENABLED [optional] if set to OFF, the test is built but not enabled as a test case

LIBS [optional] list of libraries to link against (CMake targets or external libraries)

INCLUDES [optional] list of paths to add to include directories

DEFINITIONS [optional] list of definitions to add to preprocessor defines

PERSISTENT [optional] list of persistent layer object files

GENERATED [optional] list of files to mark as generated (sets GENERATED source file property)
DEPENDS [optional] list of targets to be built before this target

TEST_DEPENDS [optional] list of tests to be run before this one

CONDITION [optional] conditional expression which must evaluate to true for this target to be built (must be valid
in a CMake 1if statement)

10 Chapter 1. ecBuild macros

ecBuild, Release 3.6.2

PROPERTIES [optional] custom properties to set on the target
ENVIRONMENT [optional] list of environment variables to set in the test environment
WORKING_DIRECTORY [optional] directory to switch to before running the test
CFLAGS [optional] list of C compiler flags to use for all C source files

See usage note below.
CXXFLAGS [optional] list of C++ compiler flags to use for all C++ source files

See usage note below.
FFLAGS [optional] list of Fortran compiler flags to use for all Fortran source files

See usage note below.

LINKER_LANGUAGE [optional] sets the LINKER_LANGUAGE property on the target

1.10.2 Usage

The CFLAGS, CXXFLAGS and FFLAGS options apply the given compiler flags to all C, C++ and Fortran sources
passed to this command, respectively. If any two ecbuild_add_executable, ecbuild_add_library or
ecbuild_add_test commands are passed the same source file and each sets a different value for the compiler flags
to be applied to that file (including when one command adds flags and another adds none), then the two commands
will be in conflict and the result may not be as expected.

For this reason it is recommended not to use the *FLAGS options when multiple targets share the same source files,
unless the exact same flags are applied to those sources by each relevant command.

Care should also be taken to ensure that these commands are not passed source files which are not required to build
the target, if those sources are also passed to other commands which set different compiler flags.

1.11 ecbuild_append_to_rpath

Append paths to the rpath.

ecbuild_append_to_rpath(RPATH_DIRS)

RPATH_DIRS is a list of directories to append to CMAKE_ INSTALL_RPATH.
« If a directory is absolute, simply append it.

e If a directory is relative, build a platform-dependent relative path (using @loader_path on Mac OSX,
SORIGIN on Linux and Solaris) or fall back to making it absolute by prepending the install prefix.

1.12 ecbuild _bundle initialize

Initialise the ecBuild environment for a bundle. Must be called before any call to ecbuild_bundle.

’ecbuild_bundle_initialize()

1.11. ecbuild_append_to_rpath 11

ecBuild, Release 3.6.2

1.13 ecbuild _bundle

Declare a subproject to be built as part of this bundle.

ecbuild_bundle (PROJECT <name>
STASH <repository> | GIT <giturl> | SOURCE <path>
[BRANCH <gitbranch> | TAG <gittag>]
[UPDATE | NOREMOTE]
[MANUAL]
[RECURSIVE])

1.13.1 Options

PROJECT [required] project name for the Git repository to be managed

STASH [DEPRECATED ; cannot be combined with GIT or SOURCE] Stash repository in the form
<project>/<repository>

GIT [cannot be combined with STASH or SOURCE] Git URL of the remote repository to clone (see git help
clone)

SOURCE [cannot be combined with STASH or GIT] Path to an existing local repository, which will be symlinked
BRANCH [optional, cannot be combined with TAG] Git branch to check out
TAG [optional, cannot be combined with BRANCH] Git tag or commit id to check out

UPDATE [optional, requires BRANCH, cannot be combined with NOREMOTE] Create a CMake target update to
fetch changes from the remote repository

NOREMOTE [optional, cannot be combined with UPDATE] Do not fetch changes from the remote repository
MANUAL [optional] Do not automatically switch branches or tags
RECURSIVE [optional] Do a recursive fetch or update

1.13.2 Usage

A bundle is used to build a number of projects together. Each subproject needs to be declared with a call to
ecbuild_bundle, where the order of projects is important and needs to respect dependencies: if project B depends
on project A, A should be listed before B in the bundle.

The first time a bundle is built, the sources of all subprojects are cloned into directories named according to project
in the source tree of the bundle (which means these directories should be added to .gitignore). If the SOURCE
option is used it must point to an existing local repository on disk and no new repository is cloned. Be aware that using
the BRANCH or TAG option leads to the corresponding version being checked out in that repository!

Subprojects are configured and built in order. Due to being added as a subproject, the usual project discovery
mechanism (i.e. locating and importing a <project>-config.cmake file) is not used. Also there are no
<project>-config.cmake files being generated for individual subprojects. However there are package-config
files being generated for each library.

To switch off a subproject when building a bundle, set the CMake variable BUNDLE__SKIP_<PNAME> where PNAME
is the capitalised project name.

12 Chapter 1. ecBuild macros

ecBuild, Release 3.6.2

1.14 ecbuild_bundle_finalize

Finalise the ecBuild environment for a bundle. Must be called after the last call to ecbuild_bundle.

’ecbuild_bundle_finalize()

1.14.1 Options

See documentation for ecbuild_install_project() since all arguments are forwarded to an internal call to that macro.

If no arguments are passed, then the default installation NAME is set to the default project name
${CMAKE_PROJECT_NAME}

1.15 ecBuild Cache

During initialisation, ecBuild introspects the compiler and operating system and performs a number of checks. The
result of these is written to a dedicated ecbuild-cache.cmake file in the build tree. This cache may be used to
speed up subsequent clean builds i.e. those where no CMakeCache.txt exists yet.

To use the ecBuild cache, configure with -DECBUILD_CACHE=<cache-file>, where <cache-file> is the
path to an existing ecbuild-cache.cmake.

Note: The ecBuild cache is specific to compiler and operating system. Do not attempt to use a cache file created on
a different machine or with a different compiler!

1.16 ecbuild _check c source return

Compile and run a given C source code and return its output.

ecbuild_check_c_source_return(<source>
VAR <name>
OUTPUT <name>

[INCLUDES <pathl> [<path2> ...]]
[LIBS <libraryl> [<library2> ...]]
[DEFINITIONS <definitionl> [<definition2> ... 1 1)

1.16.1 Options

VAR [required] name of the check and name of the CMake variable to write result to
OUTPUT [required] name of CMake variable to write the output to

INCLUDES |[optional] list of paths to add to include directories

LIBS [optional] list of libraries to link against (CMake targets or external libraries)
DEFINITIONS [optional] list of definitions to add to preprocessor defines

1.14. ecbuild_bundle_finalize 13

ecBuild, Release 3.6.2

1.16.2 Usage

This will write the given source to a .c file and compile and run it with ecbuild_try_run. If successful, $ { VAR} is set
to 1 and $ {OUTPUT} is set to the output of the successful run in the CMake cache.

The check will not run if $ { VAR} is defined (e.g. from ecBuild cache).

1.17 ecbuild_check cxx_source return

Compile and run a given C++ code and return its output.

ecbuild_check_cxx_source_return(<source>
VAR <name>
OUTPUT <name>
[INCLUDES <pathl> [<path2> ...]]
[LIBS <libraryl> [<library2> ...]]
[DEFINITIONS <definitionl> [<definition2> ... 1 1)

1.17.1 Options

VAR [required] name of the check and name of the CMake variable to write result to
OUTPUT [required] name of CMake variable to write the output to

INCLUDES [optional] list of paths to add to include directories

LIBS [optional] list of libraries to link against (CMake targets or external libraries)
DEFINITIONS [optional] list of definitions to add to preprocessor defines

1.17.2 Usage

This will write the given source to a .cxx file and compile and run it with ecbuild_try_run. If successful, $ { VAR} is
setto 1 and $ {OUTPUT} is set to the output of the successful run in the CMake cache.

The check will not run if $ { VAR} is defined (e.g. from ecBuild cache).

1.18 ecbuild _check fortran

Check for Fortran features.

ecbuild_check_fortran([FEATURES <featurel> [<feature2> ...]]
[REQUIRED <featurel> [<feature2> ... 1]
[PRINT])

14 Chapter 1. ecBuild macros

ecBuild, Release 3.6.2

1.18.1 Options

FEATURES [optional] list of optional features to check for
REQUIRED [optional] list of required features to check for, fails if not detected

PRINT [optional] print a summary of features checked for, found and not found

1.18.2 Note

If neither FEATURES nor REQUIRED are given, check for all features.

1.19 ecbuild _check fortran_source_ return

Compile and run a given Fortran code and return its output.

ecbuild_check_fortran_source_return(<source>
VAR <name>
OUTPUT <name>
[INCLUDES <pathl> [<path2> ...]]
[LIBS <libraryl> [<library2> ...]]
[DEFINITIONS <defl> [<def2> ... 1 1)

1.19.1 Options

VAR [required] name of the check and name of the CMake variable to write result to
OUTPUT [required] name of CMake variable to write the output to

INCLUDES [optional] list of paths to add to include directories

LIBS [optional] list of libraries to link against (CMake targets or external libraries)
DEFINITIONS [optional] list of definitions to add to preprocessor defines

1.19.2 Usage

This will write the given source to a .f file and compile and run it with ecbuild_try_run. If successful, $ { VAR} is set
to 1 and $ {OUTPUT} is set to the output of the successful run in the CMake cache.

The check will not run if $ {VAR} is defined (e.g. from ecBuild cache).

1.20 ecbuild_check_urls

Check multiple URL validity.

ecbuild_check_urls(NAMES <namel> [<name2> ... |
RESULT <result>)

curl or wget is required (curl is preferred if available).

1.19. ecbuild_check_fortran_source return 15

ecBuild, Release 3.6.2

1.20.1 Options

NAMES [required] list of names of the files to check, including the directory structure on the server hosting test files
(if available)

RESULT [required] check result (0 if all URLSs exist, more if not)

1.20.2 Usage

Check whether files exist on <ECBUILD_DOWNLOAD_BASE_URL>/<NAME> for each name given in the list of
NAMES. RESULT is set to the number of missing files.

1.20.3 Examples

Check file ... existence:

ecbuild_check_urls(NAMES test/data/dir/msll.grib test/data/dir/msl2.grib
RESULT FILES_EXIST)

1.21 ecbuild_compiler_flags

Set compiler specific default compilation flags for a given language.

’ecbuild_compiler_flags(<lang>)

The procedure is as follows:

1. ecBuild does not set CMAKE_ <lang>_FLAGS i.e. the user can set these via —D or the CMake cache and these
will be the “base” flags.

2. ecBuild overwrites CMAKE_<lang>_FLAGS_<btype> in the CMake cache for all build types with compiler
specific defaults for the currently loaded compiler i.e. any value set by the user via —D or the CMake cache has
no effect.

3. Any value the user provides via ECBUILD_<lang>_FLAGS or ECBUILD_<lang>_FLAGS_<btype>
overrides the corresponding CMAKE_ <lang>_FLAGS or CMAKE_<lang>_FLAGS_<btype> without be-
ing written to the CMake cache.

1.22 Using custom compilation flags

If compilation flags need to be controlled on a per source file basis, ecBuild supports defining custom rules in a CMake
or JSON file.

When using this approach, default compilation flags are NOT loaded!

16 Chapter 1. ecBuild macros

ecBuild, Release 3.6.2

1.22.1 Overriding compilation flags on a per source file basis using CMake rules

Compiler flags can be overridden on a per source file basis by setting the CMake variable
ECBUILD_COMPILE_FLAGS to the full path of a CMake file defining the override rules. If set,
<PNAME>_ECBUILD_COMPILE_FLAGS takes precendence and ECBUILD_COMPILE_FLAGS is ignored,
allowing for rules that only apply to a subproject (e.g. in a bundle).

Flags can be overridden in 3 different ways:

1. By defining project specific flags for a language and (optionally) build type e.g.

set (<PNAME>_Fortran_FLAGS "...") # common flags for all build types
set (<PNAME>_Fortran_FLAGS_DEBUG "...") # only for DEBUG build type

2. By defining source file specific flags which are combined with the project and target specific flags

set_source_files_properties (<source>
PROPERTIES COMPILE_FLAGS "..." # common flags for all build types
COMPILE_FLAGS_DEBUG "...") # only for DEBUG build type

3. By defining source file specific flags which override the project and target specific flags

set_source_files_properties (<source>
PROPERTIES OVERRIDE_COMPILE_FLAGS "..."
OVERRIDE_COMPILE_FLAGS_DEBUG "...")

See examples/override-compile-flags in the ecBuild source tree for a complete example using this tech-
nique.

1.22.2 Overriding compilation flags on a per source file basis using JSON rules

Compiler flags can be overridden on a per source file basis by setting the CMake variable ECBUILD_SOURCE_FLAGS
to the full path of a JSON file defining the override rules. If set, <PNAME>_ECBUILD_SOURCE_FLAGS takes
precendence and ECBUILD_SOURCE_FLAGS is ignored, allowing for rules that only apply to a subproject (e.g. in a
bundle).

The JSON file lists shell glob patterns and the rule to apply to each source file matching the pattern, defined as an array
[op, flagl, ...] containing an operator followed by one or more flags. Valid operators are:

+ Add the flags to the default compilation flags for matching files
= Set the flags for matching files, disregarding default compilation flags
/ Remove the flags from the default compilation flags for matching files

Rules can be nested to e.g. only apply to a subdirectory by setting the rule to a dictionary, which will only apply to
source files matching its pattern.

An example JSON file demonstrating different rule types is given below:

{

wyn

v|+n, uigon J,

[
"x.cxx" ["+", "-cxx11" 1,
"x.£90" ["+", "-pipe" 1,
"foo.c" ["+, "-o0" 1,
"foo.cc" ["+", "-oz2", "-pipe" 1,
"bar/*": {
"«.£f90" : ["=", "-01"]

(continues on next page)

1.22. Using custom compilation flags 17

ecBuild, Release 3.6.2

(continued from previous page)

}y

}

"baz/*": {
ll*.fgo" . [ll/", "7pipe"],
"k £90" ¢ ["/, "-02" 1,
"s.£90" i ["+", "-03"]

See examples/override-compile-flags in the ecBuild source tree for a complete example using this tech-

nique.

1.23 ecbhuild_declare_project

Initialise an ecBuild project. A CMake project must have previously been declared with project (<name>

).

’ ecbuild_declare_project ()

Sets the following CMake variables

<PROJECT_NAME>_GIT_SHA1 Git revision (if project is a Git repo)
<PROJECT_NAME>_GIT_SHA1_SHORT short Git revision (if project is a Git repo)
<PROJECT_NAME>_VERSION version as given in project(VERSION)
<PROJECT_NAME>_VERSION_MAJOR major version number
<PROJECT_NAME>_VERSION_MINOR minor version number
<PROJECT_NAME>_VERSION_PATCH patch version number
INSTALL_BIN_DIR relative install directory for executables
INSTALL_LIB_DIR relative install directory for libraries
INSTALL_INCLUDE_DIR relative install directory for include files
INSTALL_DATA_DIR relative install directory for data
INSTALL_CMAKE_DIR relative install directory for CMake files

Generation of the first two variables can be disabled by setting the ECBUILD_RECORD_GIT_COMMIT_SHA1
option to OFF. This prevents makefiles from being regenerated whenever the Git revision changes.

1.23

.1 Customising install locations

The relative installation directories of components can be customised by setting the following CMake variables on the
command line or in cache:

INSTALL_BIN_DIR directory for installing executables (default: bin)
INSTALL_LIB_DIR directory for installing libraries (default: 1ib)
INSTALL_INCLUDE_DIR directory for installing include files (default: include)
INSTALL_DATA_DIR directory for installing data (default: share/<project_name>)

INSTALL_CMAKE_DIR directory for installing CMake files (default: lib/cmake/
<project_name>)

18

Chapter 1. ecBuild macros

ecBuild, Release 3.6.2

Using relative paths is recommended, which are interpreted relative to the CMAKE_INSTALL_PREFIX. Using abso-
lute paths makes the build non-relocatable and may break the generation of relocatable binary packages.

1.24 ecbuild_dont_pack

Specify files and directories to exclude from packaging.

ecbuild_dont_pack([FILES <filel> [<file2> ... 1]
[DIRS <dirl> [<dir2> ... 1]
[REGEX <regex>])

1.24.1 Options

FILES [optional, one of FILES, DIRS, REGEX required] list of files to exclude from packaging
DIRS [optional, one of FILES, DIRS, REGEX required] list of directories to exclude from packaging

REGEX [optional, one of FILES, DIRS, REGEX required] regular expression to match files / directories to exclude
from packaging

1.25 ecbuild_download resource

Download a file from a given URL and save to FILE at configure time.

’ecbuild_download_resource(FILE URL)

curl or wget is required (curl is preferred if available).

The default timeout is 30 seconds, which can be overridden with ECBUILD_DOWNLOAD_TIMEOUT. Downloads are
by default only tried once, use ECBUILD_DOWNLOAD_RETRIES to set the number of retries.

1.26 ecbuild_echo_target_property

Output a given property of a given target.

’ecbuild_echo_target_property(<target> <property>)

1.27 ecbuild_echo_target

Output all possible target properties of a given target.

’ecbuild_echo_target(<target>)

1.24. ecbuild_dont_pack 19

ecBuild, Release 3.6.2

1.28 ecbuild_echo_targets

Output all possible target properties of the specified list-of-targets. This is very useful for debugging.

’ecbuild_echo_targets(<list-of-targets>)

1.29 ecbuild_enable_fortran

Enable the Fortran language.

’ecbuild_enable_fortran([MODULE_DIRECTORY <directory>] [REQUIRED])

1.29.1 Options

MODULE_DIRECTORY [optional, defaults to ${PROJECT_BINARY_DIR}/module] set the
CMAKE_Fortran_MODULE_DIRECTORY

NO_MODULE_DIRECTORY [optional] unset CMAKE_Fortran_ MODULE_DIRECTORY
REQUIRED [optional] fail if no working Fortran compiler was detected

1.30 ecbuild_evaluate_dynamic_condition

Add a CMake configuration option, which may depend on a list of packages.

’ecbuild_evaluate_dynamic_condition(condition outVariable)

1.30.1 Options

condition A list of boolean statements like OPENSSL_FOUND AND ENABLE_OPENSSL

1.31 ecbuild_filter_list

Filters a list for NOTFOUND entries and non existing TARGETS.

ecbuild_filter_list([INCLUDES] [LIBS]
LIST <list>
[LIST_INCLUDE <output_list>]
[LIST_EXCLUDE <output_list>])

20 Chapter 1. ecBuild macros

ecBuild, Release 3.6.2

1.31.1 Options

INCLUDES |[optional] Consider existing dirs as valid

LIBS [optional] Consider existing targets, files and compile flags as valid
LIST [required] a list

LIST_INCLUDE [optional] The output list with all valid entries of LIST
LIST_EXCLUDE [optional] The output list with all invalid entries of LIST

1.32 ecbuild_find_fortranlibs

Find the Fortran (static) link libraries.

ecbuild_find_fortranlibs([COMPILER gfortran|pgi|xlf|intel]
[REQUIRED])

1.32.1 Options

COMPILER [optional, defaults to gfortran] request a given Fortran compiler (gfortran, pgi, x1£f, intel)
REQUIRED [optional] fail if Fortran libraries were not found

1.33 ecbuild_find_lexyacc

Find flex and bison (preferred) or lex and yacc.

1.33.1 Input variables

The following CMake variables can set to skip search for bison or yacc:
SKIP_BISON do not search for flex and bison
SKIP_YACC do not search for lex and yacc

1.33.2 Output variables

The following CMake variables are set if flex and bison were found:
FLEX_FOUND flex was found
BISON_FOUND bison was found
FLEX_EXECUTABLE path to the flex executable
BISON_EXECUTABLE path to the bison executable

The following CMake variables are set if lex and yacc were found:
LEXYACC_FOUND Found suitable combination of bison, lex, yacc, flex
LEX_FOUND lex was found

1.32. ecbuild_find_fortranlibs 21

ecBuild, Release 3.6.2

YACC_FOUND yacc was found
LEX_EXECUTABLE path to the lex executable
YACC_EXECUTABLE path to the yacc executable

1.34 ecbuild_find_mpi

Find MPI and check if MPI compilers successfully compile C/C++/Fortran.

ecbuild_find _mpi([COMPONENTS <componentl> [<component2> ...]]
[REQUIRED])

1.34.1 Options

COMPONENTS [optional, defaults to C] list of required languages bindings
REQUIRED [optional] fail if MPI was not found

1.34.2 Input variables

ECBUILD_FIND_MPI [optional, defaults to TRUE] test C/C++/Fortran MPI compiler wrappers (assume working

if FALSE)

1.34.3 Output variables

The following CMake variables are set if MPI was found:

MPI_FOUND
MPI_LIBRARY
MPI_EXTRA_LIBRARY

The following CMake variables are set if C bindings were found:

MPI_C_FOUND
MPI_C_COMPILER
MPI_C_COMPILE_FLAGS
MPI_C_INCLUDE_PATH
MPI_C_LIBRARIES
MPI_C_LINK_FLAGS

The following CMake variables are set if C++ bindings were found:

MPI_CXX_FOUND
MPI_CXX_COMPILER
MPI_CXX_COMPILE_FLAGS
MPI_CXX_INCLUDE_PATH
MPI_CXX_LIBRARIES
MPI_CXX_LINK_FLAGS

The following CMake variables are set if Fortran bindings were found:

22 Chapter 1.

ecBuild macros

ecBuild, Release 3.6.2

MPI_Fortran_FOUND
MPI_Fortran_COMPILER
MPI_Fortran_COMPILE_FLAGS
MPI_Fortran_INCLUDE_PATH
MPI_Fortran_LIBRARIES
MPI_Fortran_LINK_FLAGS

1.35 ecbuild_enable_mpi

Find MPI, add include directories and set compiler flags.

ecbuild_enable_mpi([COMPONENTS <componentl> [<component2> ...]]
[REQUIRED])

For each MPI language binding found, set the corresponding compiler flags and add the include directories.

See ecbuild_find_mpi for input and output variables.

1.35.1 Options

COMPONENTS [optional, defaults to C] list of required languages bindings
REQUIRED [optional] fail if MPI was not found

1.36 ecbuild_include_mpi
Add MPI include directories and set compiler flags, assuming MPI was found.

For each MPI language binding found, set corresponding compiler flags and add include directories.
ecbuild_find_mpi must have been called before.

1.37 ecbuild_find_omp

Find OpenMP.

ecbuild_find_omp([COMPONENTS <componentl> [<component2> ...]]
[REQUIRED]
[STUBS])

1.37.1 Options

COMPONENTS [optional, defaults to C] list of required languages bindings
REQUIRED [optional] fail if OpenMP was not found
STUBS [optional] search for OpenMP stubs

1.35. ecbuild_enable_mpi 23

ecBuild, Release 3.6.2

1.37.2 Output variables

The following CMake variables are set if OpenMP was found:
OMP_FOUND OpenMP was found
For each language listed in COMPONENTS, the following variables are set:
OMP_<LANG>_FOUND OpenMP bindings for LANG were found
OMP_<LANG>_FLAGS OpenMP compiler flags for LANG
If the STUBS option was given, all variables are also set with the OMPSTUBS instead of the OMP prefix.

1.38 ecbuild_enable_omp

Find OpenMP for C, C++ and Fortran and set the compiler flags for each language for which OpenMP support was
detected.

1.39 ecbhuild_enable_ompstubs

Find OpenMP stubs for C, C++ and Fortran and set the compiler flags for each language for which OpenMP stubs
were detected.

1.40 ecbuild_find_package

Find a package and import its configuration.

ecbuild_find_package([NAME] <name>

[[VERSION] <version> [EXACT]]

[COMPONENTS <componentl> [<component2> ...] 1]
[URL <url>]

[DESCRIPTION <description>]

[TYPE <type>]

[PURPOSE <purpose>]

[FAILURE_MSG <message> |

[REQUIRED]

[QUIET])

1.40.1 Options

NAME [required] package name (used as Find<name>.cmake and <name>-config.cmake)
VERSION [optional] minimum required package version

COMPONENTS [optional] list of package components to find (behaviour depends on the package)
EXACT [optional, requires VERSION] require the exact version rather than a minimum version
URL [optional] homepage of the package (shown in summary and stored in the cache)

DESCRIPTION [optional] literal string or name of CMake variable describing the package

24 Chapter 1. ecBuild macros

ecBuild, Release 3.6.2

TYPE [optional, one of RUNTIMEIOPTIONALIRECOMMENDEDIREQUIRED] type of dependency of the project
on this package (defaults to OPTIONAL)

PURPOSE [optional] literal string or name of CMake variable describing which functionality this package enables
in the project

FAILURE_MSG [optional] literal string or name of CMake variable containing a message to be appended to the
failure message if the package is not found

REQUIRED [optional (equivalent to TYPE REQUIRED, and overrides TYPE argument)] fail if package cannot be
found

QUIET [optional] do not output package information if found

1.40.2 Input variables
The following CMake variables influence the behaviour if set (<name> is the package name as given, <NAME> is the
capitalised version):

<name>_ROOT install prefix path of the package

<name>_PATH install prefix path of the package, prefer <name>_ROOT

<NAME>_PATH install prefix path of the package, prefer <name>_ROOT

<name>_DIR directory containing the <name>-config.cmake file (usually
<install-prefix>/1lib/cmake/<name>), prefer <name>_ROOT

CMAKE_PREFIX_PATH Specify this when most packages are installed in same prefix

The environment variables <name>_ROOT, <name>_PATH, <NAME>_PATH, <name>_DIR are taken into account
only if the corresponding CMake variables are unset.

Note, some packages are found via Find<name>.cmake and may have their own mechanism of finding paths with
other variables, e.g. <name>_HOME. See the corresponing Find<name>.cmake file for datails, or use cmake
—help-module Find<name> if it is a standard CMake-recognized module.

1.40.3 Usage

The search proceeds as follows:

1. If <name> is a subproject of the top-level project, search for <name>-config.cmake in
<name>_BINARY_DIR.

2. If Find<name>.cmake exists in CMAKE_MODULE_PATH, search using it.
3. If any paths have been specified by the user via CMake or environment variables as given above:
e search for <name>-config.cmake in those paths only
« fail if the package was not found in any of those paths
¢ Search paths are in order from high to low priority:
— <name>_DIR
— <name>_ROOT
— <name>_PATH

- <NAME>_PATH

ENV{<name>_ROOT}

1.40. ecbuild_find_package 25

ecBuild, Release 3.6.2

ENV{<name>_PATH}

ENV{<NAME>_PATH}

— CMAKE_PREFIX_PATH

ENV{<name>_DIR}

ENV{CMAKE_PREFIX_PATH}
— system paths
See CMake documentation of find_package () for details on search

4. Fail if the package was not found and is REQUIRED.

1.41 ecbuild_find_package_search_hints

Detect more search hints and possibly add to <name>_ROOT

’ecbuild_find_package_search_hints(NAME <name>)

This is called within ecbuild_find_package(). Alternatively it can be called anywhere before a standard find_package()

1.41.1 Motivation

Since CMake 3.12 the recommended approach to find_package is via <name>_ROOT which can be set both as vari-
able or in the environment. Many environments still need to be adapted to this, as they are set up with the ecbuild
2 convention <name>_PATH or <NAME>_PATH. Furthermore this allows compatibility with <name>_ROOT for
CMake versions < 3.12

1.41.2 Procedure

1) If neither <name>_ROOT nor <name>_DIR are set in scope: Try setting <name>_ROQOT variable to first
valid in list [<name>_PATH ; <NAME>_PATH]

2) If 1) was not succesfull and neither <name>_ROOT nor <name>_DIR are set in environment: Try set-
ting <name>_ROOT variable to first valid in list [ENV{<name>_PATH} ; ENV{<NAME>_PATH}

]
3) Overcome CMake versions < 3.12 that do not yet recognize <name>_ROOT in scope or environment
If CMake version < 3.12:

If <name>_DIR not defined in scope or environment, but <name>_ROOT IS defined in scope or environment
Try setting <name>_DIR to a valid cmake-dir deduced from <name>_ROOT. Warning: Deduc-
tion is not feature-complete (it could be improved, but should now cover 99% of cases)

It is advised to use CMake 3.12 instead.

26 Chapter 1. ecBuild macros

ecBuild, Release 3.6.2

1.42 ecbuild_find_perl

Find perl executable and its version.

’ecbuild_find_perl([REQUIRED])

1.42.1 Options

REQUIRED [optional] fail if perl was not found

1.42.2 Output variables

The following CMake variables are set if perl was found:
PERL_FOUND perl was found
PERL_EXECUTABLE path to the perl executable
PERL_VERSION perl version
PERL_VERSION_STRING perl version (same as PERL_VERSION)

1.43 ecbuild_find_python

Find Python interpreter, its version and the Python libraries.

’ecbuild_find_python([VERSION <version>] [REQUIRED] [NO_LIBS])

1.43.1 Options

VERSION [optional] minimum required version
REQUIRED [optional] fail if Python was not found
NO_LIBS [optional] only search for the Python interpreter, not the libraries

Unless NO_LIBS is set, the python—config utility, if found, is used to determine the Python include directories,
libraries and link line. Set the CMake variable PYTHON_NO_CONF IG to use CMake’s FindPythonLibs instead.

1.43.2 Output variables

The following CMake variables are set if python was found:
PYTHONINTERP_FOUND Python interpreter was found
PYTHONLIBS_FOUND Python libraries were found
PYTHON_FOUND Python was found (both interpreter and libraries)
PYTHON_EXECUTABLE Python executable
PYTHON_VERSION_MAJOR major version number
PYTHON_VERSION_MINOR minor version number

1.42. ecbuild_find_perl 27

ecBuild, Release 3.6.2

PYTHON_VERSION_PATCH patch version number
PYTHON_VERSION_STRING Python version
PYTHON_INCLUDE_DIRS Python include directories
PYTHON_LIBRARIES Python libraries
PYTHON_SITE_PACKAGES Python site packages directory

1.44 ecbuild_generate_config_headers

Generates the ecBuild configuration header for the project with the system introspection done by CMake.

’ecbuild_generate_config_headers([DESTINATION <directory>])

1.44.1 Options

DESTINATION [optional] installation destination directory

1.45 ecbuild_generate_fortran_interfaces

Generates interfaces from Fortran source files.

ecbuild_generate_fortran_interfaces(TARGET <name>
DESTINATION <path>
DIRECTORIES <directoryl> [<directory2> ...]
[PARALLEL <integer>]
[INCLUDE_DIRS <name>]
[GENERATED <name>]
[SOURCE_DIR <path>]
[SUFFIX <suffix>]
[FCM_CONFIG_FILE <file>]

1.45.1 Options

TARGET [required] target name

DESTINATION [required] sub-directory of CMAKE_CURRENT_BINARY_DIR to install target to
DIRECTORIES [required] list of directories in SOURCE_DIR in which to search for Fortran files to be processed
PARALLEL [optional, defaults to 1] number of processes to use (always 1 on Darwin systems)

INCLUDE_DIRS [optional] name of CMake variable to store the path to the include directory containing the result-
ing interfaces

GENERATED [optional] name of CMake variable to store the list of generated interface files, including the full path
to each

SOURCE_DIR [optional, defaults to CMAKE_CURRENT_SOURCE_DIR] directory in which to look for the sub-
directories given as arguments to DIRECTORIES

SUFFIX [optional, defaults to “.intfb.h”’] suffix to apply to name of each interface file

28 Chapter 1. ecBuild macros

ecBuild, Release 3.6.2

FCM_CONFIG_FILE [optional, defaults to the fcm-make-interfaces.cfg file in the ecbuild project] FCM
configuration file to be used to generate interfaces

Usage
The listed directories will be recursively searched for Fortran files of the form <fname>. [fF], <fname>. [fF] 90,
<fname>. [fF]03 or <fname>. [fF]08. For each matching file, a file <fname><suffix> will be created

containing the interface blocks for all external subprograms within it, where <suffix> is the value given to the
SUFFIX option. If a file contains no such subprograms, no interface file will be generated for it.

1.46 ecbuild_generate_project_config

Generate the <project>-config.cmake file

ecbuild_generate_project_config(<template>
[FILENAME <filename>]
[PATH_VARS <varl> ...])

1.46.1 Options

<template> [required] path to the template to use
FILENAME [optional] name of the output file
PATH_VARS [optional] list of paths to be exported to the config template

1.46.2 Usage

The PATH_VARS parameter has the same meaning as for the configure_package_config_file macro in CMakePack-
ageConfigHelpers: the value of ${varN} should be relative to the install directory (PROJECT_BINARY_DIR for
build-dir export and INSTALL_PREFIX for the installed package). A reliable path will be computed and can be
evaluated from the template through PACKAGE_${varN}.

1.47 ecbuild_generate_yy

Process lex/yacc files.

ecbuild_generate_yy(YYPREFIX <prefix>
YACC <file>
LEX <file>
DEPENDANT <filel> [<file2> ...]
[SOURCE_DIR <dir>]
[OUTPUT_DIRECTORY <dir>]
[YACC_TARGET <file>]
[LEX_TARGET <file>]
[YACC_FLAGS <flags>]
[LEX_FLAGS <flags>]
[BISON_FLAGS <flags>]
[FLEX_FLAGS <flags>])

1.46. ecbuild_generate_project_config 29

ecBuild, Release 3.6.2

1.47.1 Options

YYPREFIX [required] prefix to use for file and function names
YACC [required] base name of the yacc source file (without .y extension)
LEX [required] base name of the lex source file (without .1 extension)

DEPENDANT [required] list of files which depend on the generated lex and yacc target files At least one should be
an existing source file (not generated itself).

SOURCE_DIR [optional, defaults to CMAKE_CURRENT_SOURCE_DIR] directory where yacc and lex source
files are located

OUTPUT_DIRECTORY [optional, defaults to CMAKE_CURRENT_BINARY_DIR] output directory for yacc and
lex target files

YACC_TARGET [optional, defaults to YACC] base name of the generated yacc target file (without .c extension)
LEX_TARGET [optional, defaults to LEX] base name of the generated lex target file (without .c extension)
YACC_FLAGS [optional, defaults to -t] flags to pass to yacc executable

LEX FLAGS [optional] flags to pass to lex executable

BISON_FLAGS [optional, defaults to -t] flags to pass to bison executable

FLEX_FLAGS [optional, defaults to -1] flags to pass to flex executable

1.48 ecbhuild_get_cxx11_flags

Set the CMake variable ${CXX11_FLAGS} to the C++11 flags for the current compiler (based on macros from
https://github.com/UCL/GreatCMakeCookOff).

’ecbuild_get_cxxll_flags(CXX11_FLAGS)

1.49 ecbhuild_get_date

Set the CMake variable $ {DATE} to the current date in the form YYYY.mm.DD.

’ecbuild_get_date(DATE)

1.50 ecbuild_get_timestamp

Set the CMake variable $ { TIMESTAMP } to the current date and time in the form YYYYmmDDHHMMSS.

’ecbuild_get_timestamp(TIMESTAMP)

30 Chapter 1. ecBuild macros

https://github.com/UCL/GreatCMakeCookOff

ecBuild, Release 3.6.2

1.51 ecbuild_get _test data

Download a test data set at build time.

ecbuild_get_test_data(NAME <name>

TARGET <target>]
DIRNAME <dir>]
DIRLOCAL <dir>]
MD5 <hash>]
EXTRACT]

[
[
[
[
[
[NOCHECK])

curl or wget is required (curl is preferred if available).

1.51.1 Options

NAME [required] name of the test data file

TARGET [optional, defaults to test_data_<name>] CMake target name

DIRNAME [optional] use when there is a directory structure on the server that hosts test files
DIRLOCAL : optional, defaults to “.”, local directory in which the test data is copied

MDS5 [optional, ignored if NOCHECK is given] md5 checksum of the data set to verify. If not given and NOCHECK
is not set, download the md5 checksum and verify

EXTRACT [optional] extract the downloaded file (supported archives: tar, zip, tar.gz, tar.bz2)
NOCHECK [optional] do not verify the md5 checksum of the data file

1.51.2 Usage

Download test data from <ECBUILD_DOWNLOAD_BASE_URL>/<DIRNAME>/<NAME>

If the ECBRUILD_DOWNLOAD_BASE_URL variable is not set, the default URL http://download.ecmwf.org/
test—data is used.

If the DIRNAME argument is not given, test data will be downloaded from <ECBUILD_DOWNLOAD_BASE_URL>/
<project>/<relative path to current dir>/<NAME>

By default, the downloaded file is verified against an md5 checksum, either given as the MD5 argument or downloaded
from the server otherwise. Use the argument NOCHECK to disable this check.

The default timeout is 30 seconds, which can be overridden with ECRUILD_DOWNLOAD_TIMEOUT. Downloads are
by default only tried once, use ECRBUILD_DOWNLOAD_RETRIES to set the number of retries.

1.51. ecbuild_get_test_data 31

ecBuild, Release 3.6.2

1.51.3 Examples

Do not verify the checksum:

’ecbuild_get_test_data(NAME msl.grib NOCHECK)

Checksum agains remote md5 file:

’ecbuild_get_test_data(NAME msl.grib)

Checksum agains local md5:

’ecbuild_get_test_data(NAME msl.grib MD5 £69ca0929d1122c7878d19f32401abe9)

1.52 ecbuild_get_test multidata

Download multiple test data sets at build time.

ecbuild_get_test_multidata(NAMES <namel> [<name2> ...]
TARGET <target>
[DIRNAME <dir>]
[DIRLOCAL <dir>]
[LABELS <labell> [<label2> ...]]
[EXTRACT]
[NOCHECK])

curl or wget is required (curl is preferred if available).

1.52.1 Options

NAMES [required] list of names of the test data files
TARGET [optional] CMake target name
DIRNAME [optional] use when there is a directory structure on the server that hosts test files
DIRLOCAL : optional, defaults to “.”, local directory in which the test data is copied
LABELS [optional] list of labels to assign to the test
Lower case project name and download_data are always added as labels.
This allows selecting tests to run via ctest -L <regex> or tests to exclude via ctest —-LE <regex>.
EXTRACT [optional] extract downloaded files (supported archives: tar, zip, tar.gz, tar.bz2)
NOCHECK [optional] do not verify the md5 checksum of the data file

32 Chapter 1. ecBuild macros

ecBuild, Release 3.6.2

1.52.2 Usage

Download test data from <ECBUILD_DOWNLOAD_BASE_URL>/<DIRNAME> for each name given in the list of
NAMES. Each name may contain a relative path, which is appended to DIRNAME and may be followed by an md5
checksum, separated with a : (the name must not contain spaces).

If the ECBUILD_DOWNLOAD_BASE_URL variable is not set, the default URL http://download.ecmwf.org/
test-data is used.

If the DIRNAME argument is not given, test data will be downloaded from <ECBUILD_DOWNLOAD_BASE_URL>/
<project>/<relative path to current dir>/<NAME>

By default, each downloaded file is verified against an md5 checksum, either given as part of the name as described
above or a remote checksum downloaded from the server. Use the argument NOCHECK to disable this check.

1.52.3 Examples

Do not verify checksums:

ecbuild_get_test_multidata(TARGET get_grib_data NAMES foo.grib bar.grib
DIRNAME test/data/dir NOCHECK)

Checksums agains remote md5 file:

ecbuild_get_test_multidata(TARGET get_grib_data NAMES foo.grib bar.grib
DIRNAME test/data/dir)

Checksum agains local md5:

ecbuild_get_test_multidata(TARGET get_grib_data DIRNAME test/data/dir
NAMES msl.grib:£69ca0929d1122c7878d19£32401abe9)

1.53 ecbuild_git

Manages an external Git repository.

ecbuild_git (PROJECT <name>
DIR <directory>
URL <giturl>
[BRANCH <gitbranch> | TAG <gittag>]
[UPDATE | NOREMOTE]
[MANUAL]
[RECURSIVE])

1.53. ecbuild_git 33

ecBuild, Release 3.6.2

1.53.1 Options

PROJECT [required] project name for the Git repository to be managed

DIR [required] directory to clone the repository into (can be relative)

URL [required] Git URL of the remote repository to clone (see git help clone)
BRANCH [optional, cannot be combined with TAG] Git branch to check out

TAG [optional, cannot be combined with BRANCH] Git tag or commit id to check out

UPDATE [optional, requires BRANCH, cannot be combined with NOREMOTE] Create a CMake target update to
fetch changes from the remote repository

NOREMOTE [optional, cannot be combined with UPDATE] Do not fetch changes from the remote repository
MANUAL [optional] Do not automatically switch branches or tags
RECURSIVE [optional] Do a recursive fetch or update

1.54 ecbuild_install_project

Set up packaging and export configuration.

’ecbuild_install_project(NAME <name> [DESCRIPTION <description>])

1.54.1 Options

NAME [required] project name used for packaging
DESCRIPTION |[optional] project description used for packaging

1.54.2 Usage

ecbuild_install_project should be called at the very end of any ecBuild project (only followed by
ecbuild_print_summary), sets up packaging of the project with cpack and exports the configuration and targets
for other projects to use.

Unless ECBUILD_SKIP_<PROJECT_NAME>_EXPORT is set, the following files are generated:
<project>-config.cmake default project configuration
<project>-config-version.cmake project version number
<project>-targets.cmake exported targets
<project>-import.cmake extra project configuration (optional)
<project>-post-import.cmake extra project configuration (optional)

For <project>-import.cmake to be exported to build and install tree, <project>-import.
cmake or <project>-import.cmake.in must exist in the source tree. The same applies for
<project>-post-import.cmake. The ‘import’ file is included before defining the targets (e.g. to call
find_dependency), whereas the ‘post-import’ file is included after (e.g. to

define aliases). <project>-config.cmake.in and <project>-config-version.cmake.in can be
provided in the source tree to override the default templates used to generate <project>-config.cmake and
<project>-config-version.cmake.

34 Chapter 1. ecBuild macros

ecBuild, Release 3.6.2

If the project is added as a subdirectory, the following CMake variables are set in the parent scope:
<PROJECT_NAME>_FOUND set to TRUE
<PROJECT_NAME>_VERSION version string
<PROJECT_NAME>_FEATURES list of enabled features
<PROJECT_NAME>_HAVE_<FEATURE> set to 1 for each enabled features

1.55 ecbuild_list_add_pattern

Exclude items from a list that match a list of patterns.

ecbuild_list_add_pattern(LIST <input_list>
GLOB <patternl> [<pattern2> ...]
[SOURCE_DIR <source_dir>]
[QUIET])

1.55.1 Options

LIST [required] list variable to be appended to
GLOB [required] Regex pattern of exclusion
SOURCE_DIR [optional] Directory from where to start search

QUIET [optional] Don’t warn if patterns don’t match

1.56 ecbuild_list_exclude_pattern

Exclude items from a list that match a list of patterns.

ecbuild_list_exclude_pattern(LIST <input_list>
REGEX <regexl> [<regex2> ... |
[QUIET])

1.56.1 Options

LIST [required] list variable to be cleaned
REGEX [required] Regex pattern of exclusions
QUIET [optional] Don’t warn if patterns don’t match

1.55. ecbuild_list_add_pattern

35

ecBuild, Release 3.6.2

1.57 Logging

ecBuild provides functions for logging based on a log level set by the user, similar to the Python logging module:
ecbuild_debug logs a STATUS message if log level <= DEBUG
ecbuild_info logs a STATUS message if log level <= INFO
ecbuild_warn logs a WARNING message if log level <= WARN
ecbuild_error logs a SEND_ERROR message if log level <= ERROR
ecbuild_critical logs a FATAL_ERROR message if log level <= CRITICAL

ecbuild_deprecate logs a DEPRECATION message as a warning en-
able CMAKE_ERROR_DEPRECATED to raise an error instead disable
CMAKE_WARN_DEPRECATED to hide deprecations

Furthermore there are auxilliary functions for outputting CMake variables, CMake lists and environment variables if
the log level is DEBUG:

ecbuild_debug_var logs given CMake variables if log level <= DEBUG
ecbuild_debug _list logs given CMake lists if log level <= DEBUG
ecbuild_debug_env_var logs given environment variables if log level <= DEBUG

ecbuild_debug_property logs given global CMake property if log level <= DERUG

1.58 ecbuild_parse_version

Parse version string of the form “<major>[.<minor>[.<patch>[.<tweak>]]][<suffix>]"

’ecbuild_parse_version(<version_str> [PREFIX <prefix>])

1.58.1 Options

@ 9

PREFIX [optional] string to be prefixed to all defined variables. If not given, the value will be used.

1.58.2 Notes

Following variables if possible:

<prefix>_VERSION_STR = <major>[.<minor>[.<patch>[.<tweak>]]][<suffix>] <pre-
fix>_VERSION = <major>[.<minor>[.<patch>[.<tweak>]]] <prefix>_VERSION_MAJOR =
<major> <prefix>_VERSION_MINOR = <minor> <prefix>_VERSION_PATCH = <patch> <pre-
fix>_VERSION_TWEAK = <tweak> <prefix>_VERSION_SUFFIX = <suffix>

36 Chapter 1. ecBuild macros

ecBuild, Release 3.6.2

1.59 ecbuild_parse_version_file

Parse version string of the form “<major>[.<minor>[.<patch>[.<tweak>]]][<suffix>]" contained in a file

’ecbuild_parse_version_file(<file> [PREFIX <prefix>])

1.59.1 Options

[TERLl

PREFIX [optional] string to be prefixed to all defined variables. If not given, the value will be used.

1.59.2 Notes

Following variables if possible:

<prefix>_VERSION_STR = <major>[.<minor>[.<patch>[.<tweak>]]][<suffix>] <pre-
fix>_VERSION = <major>[.<minor>[.<patch>[.<tweak>]]] <prefix>_VERSION_MAJOR =
<major> <prefix>_VERSION_MINOR = <minor> <prefix>_VERSION_PATCH = <patch> <pre-
fix>_VERSION_TWEAK = <tweak> <prefix>_VERSION_SUFFIX = <suffix>

1.60 ecbuild_pkgconfig

Create a pkg-config file for the current project.

ecbuild_pkgconfig([NAME <name>]

[FILENAME <filename>]

[TEMPLATE <template>]

[URL <url>]

[DESCRIPTION <description>]

[LIBRARIES <libl> [<1ib2> ...]]

[IGNORE_INCLUDE DIRS <dirl> [<dir2> ... 1 1
[IGNORE_LIBRARIES <libl> [<1ib2> ... 1]

[LANGUAGES <languagel> [<language2> ...] 1]
[VARIABLES <variablel> [<variable2> ... 1]
[NO_PRIVATE_INCLUDE_DIRS])

1.60.1 Options

NAME [optional, defaults to lower case name of the project] name to be given to the package
FILENAME [optional, defaults to <NAME> . pc] file to be generated, including .pc extension

TEMPLATE [optional, defaults to $ {ECBUILD_CMAKE_DIR}/pkg-config.pc.in] template configuration
file to use

This is useful to create customised pkg-config files.
URL [optional, defaults to $ {PROJECT_NAME } _URL] url of the package
DESCRIPTION [optional, defaults to $ {PROJECT_NAME } _ DESCRIPTION] description of the package
LIBRARIES [required] list of package libraries
IGNORE_INCLUDE_DIRS [optional] list of include directories to ignore

1.59. ecbuild_parse_version_file 37

ecBuild, Release 3.6.2

IGNORE_LIBRARIES [optional] list of libraries to ignore i.e. those are removed from LIBRARIES
VARIABLES [optional] list of additional CMake variables to export to the pkg-config file

LANGUAGES [optional, defaults to all loaded languages] list of languages to use. Accepted languages: C CXX
Fortran

NO_PRIVATE_INCLUDE_DIRS do not add include directories of dependencies to Cflags

This is mainly useful for Fortran only packages, when only modules need to be added to Cflags.

1.60.2 Input variables

The following CMake variables are used as default values for some of the options listed above:
<PROJECT_NAME>_DESCRIPTION package description
<PROJECT_NAME>_URL package URL
<PROJECT_NAME>_VERSION package version
<PROJECT_NAME>_GIT_SHA1 Git revision

1.60.3 Usage

It is good practice to provide a separate pkg-config file for each library a package exports. This can be achieved as
follows:

foreach(_lib ${${PNAME}_LIBRARIES})
if(TARGET ${_1lib})
ecbuild_pkgconfig(NAME ${_lib}

DESCRIPTION "..."
URL "..."
LIBRARIES ${_lib})
endif ()
endforeach ()

1.61 ecbuild_print_summary

Print a summary of the project, build environment and enabled features.

’ecbuild_print_summary()

If project_summary.cmake exist in the source root directory, a project summary is printed by including this file.

For a top level project, a summary of the build environment and a feature summary are also printed.

38 Chapter 1. ecBuild macros

ecBuild, Release 3.6.2

1.62 ecbuild_regex_escape

Escape regular expression special characters from the input string.

’ecbuild_regex_escape(<string> <output_variable>)

1.63 ecbuild_remove_fortran_flags

Remove Fortran compiler flags from CMAKE_Fortran_FLAGS.

’ecbuild_remove_fortran_flags(<flagl> [<flag2> ...] [BUILD <build>])

1.63.1 Options

BUILD [optional] remove flags from CMAKE_Fortran_FLAGS_<build> instead
CMAKE_Fortran_FLAGS

1.64 ecbuild_requires_macro_version

Check that the ecBuild version satisfied a given minimum version or fail.

of

ecbuild_requires_macro_version(<minimum-version>)

1.65 ecbuild_separate_sources

Separate a given list of sources according to language.

ecbuild_separate_sources (TARGET <name>
SOURCES <sourcel> [<source2> ...])

1.65.1 Options

TARGET [required] base name for the CMake output variables to set
SOURCES [required] list of source files to separate

1.65.2 Output variables

If any file of the following group of extensions is present in the list of sources, the corresponding CMake variable is

set:
<target>_h_srcs source files with extension .h, .hxx, .hh, .hpp, .H .tcc .txx .tpp
<target>_c_srcs source files with extension .c

<target>_cxx_srcs source files with extension .cc, .cxx, .cpp, .C

1.62. ecbuild_regex_escape

39

ecBuild, Release 3.6.2

<target>_fortran_srcs source files with extension .f, .F, .for, f77, .£90, .95, .F77, .F90, .F95

<target>_cuda_srcs source files with extension .cu

1.66 ecbuild_target flags

Override compiler flags for a given target.

’ecbuild_target_flags(<target> <c_flags> <cxx_flags> <fortran_flags>)

Required arguments:
target Target name
c_flags Target specific C flags (can be empty)
cxx_flags Target specific CXX flags (can be empty)
fortran_flags Target specific Fortran flags (can be empty)
There are 3 cases, only the first applicable case takes effect:
1. Use custom rules from user specified ECBUILD_COMPILE_FLAGS file and append target specific flags.
2. Use JSON rules from user specified ECBUILD_SOURCE_FLAGS file and append target specific flags.

3. Only the target specific flags are applied to all matching source files.

1.67 ecbuild_try _run

Try compiling and then running some code.

ecbuild_try_run(<run_result_var> <compile_result_var>
<bindir> <srcfile>
[CMAKE_FLAGS <flag> [<flag> ... 1]
[COMPILE_DEFINITIONS <def> [<def> ...]]
[LINK_LIBRARIES <lib> [<lib> ...]]
[COMPILE_OUTPUT_VARIABLE <var>]
[RUN_OUTPUT_VARIABLE <var>]
[OUTPUT_VARIABLE <var>]
[ARGS <arg> [<arg> ...] 1)

Try compiling a <srcfile>. Returns TRUE or FALSE for success or failure in <compile_result_var>. If
the compile succeeded, runs the executable and returns its exit code in <run_result_var>. If the executable was
built, but failed to run, then <run_result_var> will be set to FAILED_TO_RUN. See the CMake try_compile
command for information on how the test project is constructed to build the source file.

40 Chapter 1. ecBuild macros

ecBuild, Release 3.6.2

1.67.1 Options

CMAKE_FLAGS [optional] Specify flags of the form ~-DVAR: TYPE=VALUE to be passed to the cmake command-
line used to drive the test build.

The example in CMake’s try_compile shows how values for variables INCLUDE_DIRECTORIES,
LINK_DIRECTORIES, and LINK_LIBRARIES are used.

COMPILE_DEFINITIONS [optional] Specify -Ddefinition arguments to pass to add_definitions inthe
generated test project.

COMPILE_OUTPUT_VARIABLE [optional] Report the compile step build output in a given variable.

LINK_LIBRARIES [optional] Specify libraries to be linked in the generated project. The list of libraries may refer
to system libraries and to Imported Targets from the calling project.

If this option is specified, any ~-DLINK_LIBRARIES=. .. value given to the CMAKE_FLAGS option will be
ignored.

OUTPUT_VARIABLE [optional] Report the compile build output and the output from running the executable
in the given variable. This option exists for legacy reasons. Prefer COMPILE_OUTPUT_VARIABLE and
RUN_OUTPUT_VARIABLE instead.

RUN_OUTPUT_VARIABLE [optional] Report the output from running the executable in a given variable.

1.67.2 Other Behavior Settings

Set the CMAKE_TRY_COMPILE_CONF IGURATION variable to choose a build configuration.

1.67.3 Behavior when Cross Compiling

When cross compiling, the executable compiled in the first step usually cannot be run on the build host. The try_run
command checks the CMAKE_CROSSCOMP ILING variable to detect whether CMake is in cross-compiling mode.
If that is the case, it will still try to compile the executable, but it will not try to run the executable unless the
CMAKE_CROSSCOMPILING_EMULATOR variable is set. Instead it will create cache variables which must be filled
by the user or by presetting them in some CMake script file to the values the executable would have produced if it had
been run on its actual target platform. These cache entries are:

<RUN_RESULT_VAR> Exit code if the executable were to be run on the target platform.

<RUN_RESULT_VAR>__TRYRUN_OUTPUT Output from stdout and stderr if the executable were to be run on the
target platform. This is created only if the RUN_OUTPUT_VARIABLE or OUTPUT_VARIABLE option was
used.

In order to make cross compiling your project easier, use t ry_run only if really required. If you use try_run, use
the RUN_OUTPUT_VARIABLE or OUTPUT_VARIABLE options only if really required. Using them will require that
when cross-compiling, the cache variables will have to be set manually to the output of the executable. You can also
“guard” the calls to try_run with an if block checking the CMAKE_CROSSCOMPILING variable and provide an
easy-to-preset alternative for this case.

1.67. ecbuild_try_run 41

ecBuild, Release 3.6.2

1.68 ecbuild_warn_unused_files

Print warnings about unused source files in the project.

’ ecbuild_warn_unused_files ()

If the CMake variable CHECK_UNUSED_FILES is set, ecBuild will keep track of any source files (.c, .cc, .cpp, .cXx)
which are not part of a CMake target. If set, this macro reports unused files if any have been found. This is considered
a fatal error unless UNUSED_FILES_LEVEL is set to a value different from ERROR.

Note: Enabling CHECK_UNUSED_FILES can slow down the CMake configure time considerably!

42 Chapter 1. ecBuild macros

CHAPTER
TWO

ECBUILD FIND PACKAGE HELPERS

2.1 FindFFTW

Find the FFTW library.

find_package (FFTW [REQUIRED] [QUIET]
[COMPONENTS [single] [double] [long_double] [quad]ll)

By default, search for the double precision library fftw3

2.1.1 Search procedure
1) FFTW_LIBRARIES and FFTW_INCLUDE_DIRS set by user — Nothing is searched and these variables are
used instead

2) Find MKL implementation via FFTW_ENABLE_MKL —> If FFTW_ENABLE_MKL is explicitely set to ON,
only MKL is considered

If FFTW_ENABLE_MKL is explictely set to OFF, MKL will not be considered If
FFTW_ENABLE_MKL is undefined, MKL is preferred

—> MKLROQOT environment variable helps to detect MKL (See FindMKL.cmake)
3) Find official FFTW impelementation —> FFTW_ROQT variable / environment variable helps to detect FFTW

2.1.2 Components
If a different version or multiple versions of the library are required, these need to be specified as COMPONENTS. Note
that double must be given explicitly if any COMPONENTS are specified.
The libraries corresponding to each of the COMPONENTS are:
single FFTW: : fftw3f
double FETW: : fftw3
long_double FFTW: : fftw31l

quad FFTW: : fftw3qg

43

ecBuild, Release 3.6.2

2.1.3 Output variables

The following CMake variables are set on completion:
FFTW_FOUND true if FFTW is found on the system
FFTW_LIBRARIES full paths to requested FFTW libraries
FFTW_INCLUDE_DIRS FFTW include directory

2.1.4 Input variables

The following CMake variables are checked by the function:
FFTW_USE_STATIC_LIBS if true, only static libraries are found
FFTW_ROOT if set, this path is exclusively searched
FFTW_DIR equivalent to FFTW_ROQT (deprecated)
FFTW_PATH equivalent to FFTW_ROOT (deprecated)
FFTW_LIBRARIES User overriden FFTW libraries
FFTW_INCLUDE_DIRS User overriden FFTW includes directories
FFTW_ENABLE_MKL User requests use of MKL implementation

2.2 Finddemalloc

Find the Jemalloc library.

’find_package(Jemalloc [REQUIRED] [QUIET])

2.2.1 Output variables

The following CMake variables are set on completion:
Jemalloc_ FOUND true if Jemalloc is found on the system
JEMALLOC_LIBRARIES full paths to requested Jemalloc libraries
JEMALLOC_INCLUDE_DIRS Jemalloc include directory

2.2.2 Input variables

The following CMake and environment variables are considered:

Jemalloc_ ROOT

44 Chapter 2. ecBuild find package helpers

ecBuild, Release 3.6.2

2.3 FindTcmalloc

Find the Tcmalloc library.

’find_package(Tcmalloc [REQUIRED] [QUIET])

2.3.1 Output variables

The following CMake variables are set on completion:
Temalloc_ FOUND true if Tcmalloc is found on the system
TCMALLOC_LIBRARIES full paths to requested Tcmalloc libraries
TCMALLOC_LIBRARY_DIR Directory containing the TCMALLOC_LIBRARIES
TCMALLOC_INCLUDE_DIRS Tcmalloc include directories

2.3.2 Input variables

The following CMake / Environment variables are considered in order:

Tcecmalloc. ROOT CMake variable / Environment variable

2.3. FindTcmalloc

45

ecBuild, Release 3.6.2

46 Chapter 2. ecBuild find package helpers

CHAPTER
THREE

ECBUILD THIRD PARTY SCRIPTS

47

	ecBuild macros
	ecbuild_add_c_flags
	ecbuild_add_cxx_flags
	ecbuild_add_executable
	ecbuild_add_fortran_flags
	ecbuild_add_lang_flags
	ecbuild_add_library
	ecbuild_add_option
	ecbuild_add_persistent
	ecbuild_add_resources
	ecbuild_add_test
	ecbuild_append_to_rpath
	ecbuild_bundle_initialize
	ecbuild_bundle
	ecbuild_bundle_finalize
	ecBuild Cache
	ecbuild_check_c_source_return
	ecbuild_check_cxx_source_return
	ecbuild_check_fortran
	ecbuild_check_fortran_source_return
	ecbuild_check_urls
	ecbuild_compiler_flags
	Using custom compilation flags
	ecbuild_declare_project
	ecbuild_dont_pack
	ecbuild_download_resource
	ecbuild_echo_target_property
	ecbuild_echo_target
	ecbuild_echo_targets
	ecbuild_enable_fortran
	ecbuild_evaluate_dynamic_condition
	ecbuild_filter_list
	ecbuild_find_fortranlibs
	ecbuild_find_lexyacc
	ecbuild_find_mpi
	ecbuild_enable_mpi
	ecbuild_include_mpi
	ecbuild_find_omp
	ecbuild_enable_omp
	ecbuild_enable_ompstubs
	ecbuild_find_package
	ecbuild_find_package_search_hints
	ecbuild_find_perl
	ecbuild_find_python
	ecbuild_generate_config_headers
	ecbuild_generate_fortran_interfaces
	ecbuild_generate_project_config
	ecbuild_generate_yy
	ecbuild_get_cxx11_flags
	ecbuild_get_date
	ecbuild_get_timestamp
	ecbuild_get_test_data
	ecbuild_get_test_multidata
	ecbuild_git
	ecbuild_install_project
	ecbuild_list_add_pattern
	ecbuild_list_exclude_pattern
	Logging
	ecbuild_parse_version
	ecbuild_parse_version_file
	ecbuild_pkgconfig
	ecbuild_print_summary
	ecbuild_regex_escape
	ecbuild_remove_fortran_flags
	ecbuild_requires_macro_version
	ecbuild_separate_sources
	ecbuild_target_flags
	ecbuild_try_run
	ecbuild_warn_unused_files

	ecBuild find package helpers
	FindFFTW
	FindJemalloc
	FindTcmalloc

	ecBuild third party scripts

